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The integral-differential energy equation is solved, taking into account the viscous dissipa- 
tion, convection, thermal conductivity, and radiative transfer, without restrictions on the 
optical thickness of the boundary layer. Comparison of the calculated results with the solu- 
tion obtained without taking into account the absorption makes it possible to evaluate the 
relative role of absorption. The influence of radiation on the enthalpy profile and thickness 
of the boundary layer is investigated. 

It is considerably easier to take account of radiation in a boundary layer if we use the approximations 
of greater or lesser optical thickness. For a gray gas in a state of local thermodynamic equilibrium, these 
approximations reduce the integral-differential equation system to a purely differential system. A radiating 
boundary layer has been considered in these approximations by various authors [1-5], with different assump- 
tions regarding the viscosity, thermal conductivity, and convection. Oliver and McFadden [6] investigated 
a radiating boundary layer at a plate, taking into account the radiative term in the exact energy- equation, 
which is valid for all optical thicknesses. The mass absorption constant was considered to be independent 
of the frequency, temperature, and gas density. The integral-differential energy equation is also solved in 
the present article, without any restrictions on the optical thickness of the boundary layer. In contrast to 
the study by Oliver and McFadden [6], however, the absorption constant is assumed to be the same as in 
heated air, i.e., depends strongly on temperature and density. The solution of the integral-differential 
energy equation is compared with the solution obtained in the approximation of small optical thickness, i.e., 
without taking into account the absorption. Comparison of these solutions enables us to evaluate the relative 
role of absorption in radiative energy transfer. 

We will consider the flow of a radiating, viscous, heat-conductive gas by a plate, with a constant 
specific heat capacity ratio. Our assumption of a linear relationship between the enthalpy and temperature 
does not wholly correspond to the real properties of air at high temperatures. However, the inaccuracy 
due to use of this assumption in the solutions obtained with and without the absorption taken into account is 
the same, so that comparison of these solutions permits evaluation of the relative role of absorption in 
radiative energy transfer in the boundary layer. 

A "gray" gas is assumed to be in a state of local thermodynamic equilibrium. Taking the radiation 
into account under the conditions in ques t ion leads  ontyto the appearance  of an additional t e r m  in the ene rgy  
equation. In the approx imat ion  of a smal l  optical  th ickness ,  this  additional t e r m  takes  into account the two-  
d imensional i ty  of the radia t ion field. In finding the solution with the absorp t ion  taken into account, we ne-  
glect  the rad ia t ive  energy  t r a n s f e r  along the boundary layer .  The la t ter  a ssumpt ion  can be made if the 
change in t e m p e r a t u r e  along the boundary l ayer  ove r  the radia t ion  path length is sma l l ,  Because  of the 
c o m p a r a t i v e l y  slow var ia t ion  of all  the gas p a r a m e t e r s  in the longitudinal direct ion,  the radia t ion field can 
be treated as homogeneous except in the case of large radiation path lengths. In the latter case, the absorp- 
tion becomes an effect of second order of smallness in comparison with the emission, andthe radiation term 
in the energy ~ equation can be written in the same form as in the approximation of small optical thickness, 
i.e., with the two-dimensionality of the radiation field taken into account. The error in the solution that 
takes account of the absorption (resulting from assumption of one-dimensionality of the radiation field) 
should therefore not have any material influence on the results. Taking the foregoing into account, the 
equation system for a radiating boundary layer is written in the form: 
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Fig. 1. Relative inc rease  in enthalpy/x resul t ing f rom absorption 
as a function of dimensionless coordinate V for  ~ = 0.21. 1) M 
= 24; 2) 30; 3) 35. 

Fig.  2. Solution of energy equation without absorption taken into 
account for  Moo = 24 and ~ = 0.56. 1) Fini te-difference method; 2) 
expansion method. 

Ou Ou O ( O u ) .  

o (pu)+ o 
Ox ~ (p~) = o; 

The boundary conditions are  

Oh Oh ( Ou ~2+ 1 o(o4) 
Og ~ Og 

when g = O  u ~ v = O ,  h=hw;  

when y--~oo u--->U| h---~h.. 

(1) 

(2) 

An express ion  for  the radiant heat flux S is obtained after  integration of the equation for  radiation t r ans fe r  
f rom the plate surface to the upper edge of the boundary layer .  The total radiative heat flux for each t r ans -  
ve r se -coord ina te  value is found as the difference between the fluxes in the positive and negative directions 
of the y axis. The external  flux is t reated as cold (Too = 250~ nonradiative, and nonabsorptive. Ex te r -  
nal radiation sources  are  absent.  The plate t empera tu re  is constant at 2000~ The radiation produced by 
the plate i tself and its absorption in the boundary layer  cannot be taken into account. Under these conditions, 
we obtain the following express ion for  the derivative of the radiant heat flux: 

35 "~5 

0 0 

The f irs t  t e r m  on the right side of Eq. (3) corresponds  to the approximation of an optically thin boundary 
layer,  the second takes into account the absorption of the gas in the boundary layer,  and the third r ep re -  
sents the absorpt ion of the radiation reflected by the wall. 

If the dependence of the viscosi ty  on t empera tu re  is assumed to be linear,  the thermal  and dynamic 
problems are separated.  The solution of the dynamic problem is expressed by the usual Blasius function. 
We will consequently solve only the energy equation. After converting to dimensionless  quantities and using 
the Dorodnitsyn t ransformat ion  

y~ 

= x'; ~1 = .f p'dg' 
o 

(the apostrophes indicate dimensionless quantities), this equation acquires the form 
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Fig .  3.  D i m e n s i o n l e s s  enthalpy p ro f i l e s  in bounda ry  t a y e r .  1) With r a -  
dia t ion t aken  into account ;  2) without  r ad i a t ion  t aken  into account .  

F ig .  4 .  Change in  d i m e n s i o n l e s s  t h i ckness  of bounda ry  l a y e r  a long  pla te .  
1) With r ad ia t ion  t aken  into account ;  2) without r ad i a t i on  t aken  into accoun t .  

( ~ o~h { ~6 ~ } u-~-+Oh d-:~l-Oh =(y--1) lVf~, -o~]O"'~-~- Pr 0n ~ 2B~ 2h~-- 0Sh~(0E~( lT-- t i )d t - -2( I - -~)Ez(~) jo  h~(t)E2(t)dt" 

The boundary  condi t ions  a r e  

(4) 

when B = 0 h --- hw; 
(5) 

when ~q -+ er h--~ h~. 

H e r e  the a p o s t r o p h e s  on the d i m e n s i o n l e s s  v a r i a b l e s  a r e  omi t ted .  The  s c a l e s  f o r  d e t e r m i n a t i o n  of the d i -  
m e n s i o n l e s s  quant i t ies  were  s e l ec t ed  as  fo l lows:  

X:, I = L =  1 m; PM=P~.; 

h~ == 0.3h o :for M~ =: 24, 30; 

h~ = 0.2h o 

U .  

for M~ = 35. 

L 
Y M - -  - - -  ; 

! R %  

u~ = U~; 

The velocity profile necessary for solution of Eq. (4) was taken from the usual self-modeling solution with- 
out taking account of the radiation. 

The radiation properties of the gas were assumed to be the same as in heated air. The volumetric 
absorption constant was approximated from the following formula: 

• = AomT,,. (6) 

In Eq. (6), the density is measured in g/cm 3 and the temperature in deg K. Traugott [7] gives the depen- 
dence of the "gray" absorption constant of air on temperature with different densities. Taking these data 
into account, the constants in Eq. (6) have the following values: 

A=0.9.10-I~; m=l.5; n=6. 

In order to simplify evaluation of the integral exponents on the right side of Eq. (4), they can be replaced 
with sufficient accuracy by the ordinary exponents found from the formula 

Ez (~) = 0.813 exp (-- 1.562x). (7) 

The integral-differential equation (4) is solved with the boundary conditions in Eq. (5) by the finite- 
difference method proposed by Brailovskaya and Chudov [8]. Integration was carried out from [ = 0.01 with 
an interval of 0.005 for the longitudinal coordinate and 0.08 for the transverse coordinate. The distribution 
of the gas parameters in the initial cross-section [ = 0.01 was taken from the well-known self-modeling 
solution for a nonradiating gas. 
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The same  method was used to find a solution to the s impl i f ied energy  equation, re ta ining only the f i r s t  
f ac to r  in the radia t ion t e r m .  This  co r re sponds  to use of the approximat ion  of smal l  optical  th ickness ,  where 
the absorp t ion  is  not taken into account.  

Calculat ions were  made for  P r  = 0.7, p~ = 6 -10-3p0, T~ = 250~ and M~ =24 ,  30, and 35. Ath igher  
values  of M~o, the dependence of the absorp t ion  constant  on t e m p e r a t u r e  and density is no longer descr ibed  
by the fo rmula  given above [Eq. (6)] with the values  of A, m,  and n chosen.  Figure  I shows the i nc r ea se  in 
enthalpy resul t ing  f r o m  absorp t ion  as a function of ~? for  one value of ~ and different  1VI~. It can be seen  that 
the absorp t ion  has a lmos t  no effect  on the enthalpy in the boundary l ayer  over  the t e m p e r a t u r e  range inves -  
t igated (up to 16,000~ ~ = 35) with the init ial  conditions in question, although its influence i n c r e a s e s  with 
r i s ing  M~. For  the conditions under cons idera t ions ,  the in tegra l -d i f fe ren t i a l  equation (4) can the re fo re  be 
rep laced  by the s implif ied,  purely  d i f ferent ia l  equat ion obtained f r o m  Eq.  (4) by d iscarding the in tegral  
t e r m s  for  the absorp t ion .  In this case ,  the init ial  a s sumpt ion  of one-d tmens iona l i ty  of the r ad ia t ion  field 
loses  all  s ignif icance.  

A method has been  proposed fo r  solut ion of the s impl i f ied  ene rgy  equation that reduces  to solution of 
s e v e r a l  succes s ive  o rd inary  di f ferent ia l  equat ions.  The enthalpy is wr i t ten  in the f o r m  of a s e r i e s  for  
powers  of the longitudinal coordinate  ~. The coefficients of the s e r i e s  a re  the unknown functions ~ (self-  
m o d e l i n g v a r i a b l e s  inthe solution for  a nonradiat ing gas).  Substitution of the s e r i e s  into Eq. (4), taking in-  
to account only the f i r s t  f ac to r  in the radia t ion  t e r m ,  and analys is  of the coeff icients  and powers  yield the 
following e x p r e s s i o n  for  the enthalpy: 

In seeking 0 o, 01, 02, 03, etc. ,  we obtain the o rd ina ry  different ia l  equations 

Co ( ~ -  1) M~ 
q-OJo -l- 4 fo = O, (9) 

the boundary conditions 

the boundary conditions 

the boundary conditions 

the boundary condit ions 

oo(o) = h,~; o o ( ~ )  = h~; (9,) 

07 401o9/2, p-~ -t- O;fo --201fo = (10) 

ol (o) = ol (oo) = o; 

02 _}_ 0s _ 4 0 J ;  = 380~7/e0~, 
Pr 

(10') 

(11) 

(11') 
02(0) = o 2 ( o )  = o; 

03 + O~[o _ 603f ~ = 380~o7/20~ ' (12) 
Pr 

o~ (o) = ca ( ~ )  = o (12')  

etc .  

The function 00(D is  the se l f -mode l ing  solution for  a nonradiating gas .  Equations (I0), (11), and (12) 
with boundary conditions (10'), (11'), and (12') were  solved by the e l iminat ion method.  The s e r i e s  inEq.  (8), 
which is  the solution without the absorp t ion  taken into account, converges  in the region close to the leading 
edge of the plate at not over ly  la rge  values of ~, which depends on 1VI~. The region of p rac t ica l  convergence 
decreases rapidly as i~ increases. Figure 2 compares the solution of the simplified energy equation ob- 
tained by the finite-difference method with the solution in series form, retaining the first four terms to- 
gether with 00(~ ). The comparison is made for I~ = 24 and ~ = 0.56. It can be seen that the greatest dif- 
ference in the solutions occurs where the derivative dh/d~ changes abruptly. 

Figure 3 shows the enthalpy profiles for a nonradiating gas and with the radiation taken into account. 
As can be seen from this figure, radiation substantially reduces the enthalpy in the boundary layer and 
makes the profile steeper. The influence of radiation is greatest in the portion of the boundary layer where 
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the t e m p e r a t u r e  is max ima l  and the t e m p e r a t u r e  gradient  is not over ly  la rge .  Under the conditions i n q u e s -  
tion, radia t ion r educes  the th ickness  of the t h e r m a l  boundary l aye r .  Figure  4 shows the change in bound- 
a r y - l a y e r  th ickness  as a function of the longitudinal coordinate  for  ~ = 30 with and without the radia t ion 
taken  into account.  

P 
P0 
X 

Y 
u, v 

h 
P r  
S 
U~ 

P 

ff 

T 
M 

h0 
Re 
L 
• = ~O/p 

fo(~) 

Y 

~- = j' ~0dy 
0 

E i, E2 

En(~) = i w - n e x p  ( - w r ) d w  
t 

B 0 = (~r 

= 4B 0 
"~ = u a~?/Ox + pv 

= (habs - h n o  a b s ) / h m )  

NOTATION 

is the specific heat ratio; 
is the density; 
is the density of a i r  under normal  conditions; 
is the longitudinal coordinate;  
is the t r a n s v e r s e  coordinate;  
a r e  the veloci ty  pro jec t ions  on x and y axes; 
is the v iscosi ty ;  
is the enthalpy; 
m the Prandl t  number;  
~s the radia t ive  heat flux; 
~s the Velocity of incoming flow; 
ts the plate thickness;  
ts the vo lumet r i c  constant  with fo rced  e m i s s i o n  taken  into account; 
ts the S"~efan-BoItzmann constant;  
ts the t empe ra tu r e ;  
ts the Mach number;  
a r e  the Dorodnitsyn var iab les ;  
is the s tagnat ion enthalpy; 
is the Reynolds number;  
is the c h a r a c t e r i s t i c  l inear  dimension; 
is the m a s s  absorp t ion  constant;  
is  the se l f -mode l ing  va r i ab le  in solution for  nonradiat ing gas; 
is the Blas ius  function; 

is the optical  coordinate;  

a r e  the in tegra l  exponents;  

is  the d imens ion less  p a r a m e t e r  cha r ac t e r i z i ng  ra t io  of radiant  energy  
f lux  to hydrodynamic  flux; 

is the re la t ive  i nc r ea se  in enthatpy resu l t ing  f r o m  absorpt ion .  

S u b s c r i p t s  

w 
6 
oo 

M 

quantities at plate surface; 
quantities at outer edge of boundary layer; 
parameters of incoming flow; 
scale values. 
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